Time Domain Decomposition in Solution of Singular Nonlinear Optimal Control Problems
نویسنده
چکیده
Method for optimal control calculation for discrete optimal control problems characterized by non-quadratic criterion, nonlinear model with affine control, state and control delays and constraints is developed. An augmented functional of Lagrange is applied and its decomposition in time domain is proposed using new coordinating vector for dual decomposition in order to calculate the optimal state and control trajectories. The method is applied to solve the problems for maximum production of batch and minimum start-up time of continuous fermentation processes. Copyright © 2005 IFAC
منابع مشابه
Numerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices
In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...
متن کاملAdomian Decomposition Method On Nonlinear Singular Cauchy Problem of Euler-Poisson- Darbuox equation
n this paper, we apply Picard’s Iteration Method followed by Adomian Decomposition Method to solve a nonlinear Singular Cauchy Problem of Euler- Poisson- Darboux Equation. The solution of the problem is much simplified and shorter to arriving at the solution as compared to the technique applied by Carroll and Showalter (1976)in the solution of Singular Cauchy Problem.
متن کاملSolving linear and nonlinear optimal control problem using modified adomian decomposition method
First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An application in optimal control is presented. The solution in different order of approximations and different methods of approximat...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملSolution of Fractional Optimal Control Problems with Noise Function Using the Bernstein Functions
This paper presents a numerical solution of a class of fractional optimal control problems (FOCPs) in a bounded domain having a noise function by the spectral Ritz method. The Bernstein polynomials with the fractional operational matrix are applied to approximate the unknown functions. By substituting these estimated functions into the cost functional, an unconstrained nonlinear optimizat...
متن کامل